Aspects of structural health and condition monitoring of offshore wind turbines
نویسندگان
چکیده
Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.
منابع مشابه
OPTIMAL DESIGN OF JACKET SUPPORTING STRUCTURES FOR OFFSHORE WIND TURBINES USING ENHANCED COLLIDING BODIES OPTIMIZATION ALGORITHM
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization...
متن کاملSHM of Floating Offshore Wind Turbines— Challenges and First Solutions
The paper presents an integrated SHM-system for floater, moorings, tower, nacelle and rotor blades. Its core is based on a multivariate SHM-system for rotor blades with three different measuring techniques accompanied by appropriate signal processing approaches: Acoustic Emission (AE) is used for identification of relative small damages at the whole blade, e.g. bursts of fibres, cracks of bon...
متن کاملWind Turbine Structural Health Monitoring: A Short Investigation Based on SCADA Data
The use of offshore wind farms has been growing in recent years, as steadier and higher wind speeds can be generally found over water compared to land. Moreover, as human activities tend to complicate the construction of land wind farms, offshore locations, which can be found more easily near densely populated areas, can be seen as an attractive choice. However, the cost of an offshore wind far...
متن کاملAPPLICATION OF A DYNAMIC PROGNOSTIC MAINTENANCE POLICY TO offshore wind turbine farms
Many industries identify condition monitoring as a major opportunity to reduce maintenance costs and increase equipment availability. This is also the case for the fast emerging offshore wind turbine technology. However, when considering offshore wind turbine farms, implementation of condition monitoring also introduces a significant capital investment cost. Moreover, condition monitoring syste...
متن کاملA Survey on Wind Turbine Condition Monitoring and Fault Diagnosis−Part I: Components and Subsystems
-This paper provides a comprehensive survey on the state-of-the-art condition monitoring and fault diagnostic technologies for wind turbines. The Part I of this survey briefly reviews the existing literature surveys on the subject, discusses the common failure modes in the major wind turbine components and subsystems, briefly reviews the condition monitoring and fault diagnostic techniques for ...
متن کامل